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Addendum to Final Report 

AFOSR Grant FA9550-07-1-0047 
Human Supervision of Time Critical Control Systems 

Jordan Cannon 
Pavlo Krokhmal 
Robert Murphey 
Panos Pardalos 

Abstract. This addendum reports findings of the Pis in the course of the project "Human 
Supervision of Time-Critical Control Systems", which, at the moment of the report, have 
not been published or submitted for publication. In particular, it presents a robust 
technique for detecting temporal changes in multidimensional time series data 
represented by phychophysiological measurements. The proposed approach relies on 
detecting trends in an appropriate statistics obtained using independent component 
analysis of the data. In comparison to the previous results obtained by the Pis in the scope 
of this project, the new method performs much more robustly in terms of between-subject 
and between-trial differences. The proposed algorithm is amenable to efficient 
implementation compliant with on-line performance requirements. 



1. Introduction 

The increasing complexity and sophistication of computing, sensing, and 
communication technologies paves the way for proliferation of unmanned autonomous 
systems and platforms, which will replace and/or assist humans in hazardous or resource 
consuming missions. Yet, the common consensus is that despite the ever growing need 
for increased autonomy of various unmanned systems and vehicles, the human 
supervision of such systems is indispensable and critical for mission success. 

On the other hand, the large amounts of information produced by these complex 
systems can place a high demand on a human operator's cognitive load, potentially 
overwhelming him/her and leading to degraded performance. Thus, the ability of an 
automated control system to estimate the current functional state of a human 
operator/supervisor and supply information that is conducive to human decision-making 
at the given cognitive level is essential to robust and successful system performance. 

The objective of the present endeavor is to advance methods for real-time 
detection of changes in human operator's functional state that meet real-time or online 
requirements, and which can be utilized in closed-loop autonomous control systems with 
human supervision. Generally, operator functional state (OFS) can be defined as the 
momentary ability of an operator to meet task demands with their cognitive and 
physiological resources. In the context of this work, the OFS is associated with cognitive 
load experienced by the operator; with this caveat in mind, we will use both terms 
interchangeably. 

With the ability to measure and detect changes in OFS in real-time, a closed-loop 
system between the operator and machine could optimize OFS through the dynamic 
allocation of tasks. For instance, if the system detects the operator is in cognitive 
overload, it can automate certain tasks allowing them to better focus on salient 
information. Conversely, if the system detects under-vigilance, it can allocate tasks back 
to the manual control of the operator. In essence, this system operates to "dynamically 
match task demands to [an] operator's momentary cognitive state", thereby achieving 
optimal OFS (Wilson, Russell, 2007). 

OFS is commonly measured indirectly, like using overt performance metrics on 
tasks; if performance is declining, a low OFS is assumed. Another indirect measure is the 
subjective estimate of mental workload, where an operator narrates his/her perceived 
functional state while performing tasks (Wilson, Russell, 2007). Unfortunately, indirect 
measures of OFS are often infeasible in operational settings; performance metrics are 
difficult to construct for highly-automated complex systems, and subjective workload 
estimates are often inaccurate and intrusive (Wilson, Russell, 2007; Prinzel et al., 2000; 
Smith et al., 2001). 

OFS can be more directly measured via psychophysiological signals such as 
electroencephalogram (EEG) and electrooculography (EOG). Current research has 
demonstrated these signals' ability to respond to changing cognitive load and to measure 
OFS (Wilson, Fisher, 1991; Wilson, Fisher, 1995; Gevins et al., 1997; Gevins et al., 
1998; Byrne, Parasuraman, 1996). Moreover, psychophysiological signals are 
continuously available and can be obtained in a non-intrusive manner, pre-requisite for 
their use in operational environments. 

The objective of this study is to advance schemes which detect changes in OFS by 
monitoring psychophysiological signals in real-time. Reviews on similar methods can be 
found in, e.g., Wilson and Russell (2003a) and Wilson and Russell (2007). Many of these 



methods employ pattern recognition to classify mental workload into one of several 
discrete categories. For instance, given an experiment with easy, medium and hard tasks, 
and assuming the tasks induce varying degrees of mental workload on a subject, these 
methods classify which task is being performed for each epoch of psychophysiological 
data. The most common classifiers are artificial neural networks (ANN) and multivariate 
statistical techniques such as stepwise discriminant analysis (SWDA). ANNs have proved 
especially effective at classifying OFS as they account for the non-linear and higher order 
relationships often present in EEG/EOG data; they routinely achieve classification 
accuracy greater than 80%. 

However, the discrete output of these classification schemes is not conducive to 
real-time change detection. They accurately classify OFS, but they do not indicate when 
OFS has changed; the change points remain ambiguous and left to subjective 
interpretation. Thus, the present study introduces several online algorithms which 
objectively determine change in OFS via real-time psychophysiological signals. 

The following sections describe the dataset evaluated, discuss the statistical 
properties of psychophysiological signals, and detail the various algorithms which utilize 
these signals to detect real-time change in OFS. For each algorithm, results are presented 
regarding their efficacy and a discussion is provided. Finally, the study is concluded with 
a review and comparison of each method. 

2. Data collection, processing, and analysis 

The dataset utilized in the following analyses originated from experiments 
conducted at Wright-Patterson AFB in 2008. Data was available for three subjects. Each 
subject performed two fourteen-minute trials with unmanned aerial vehicle (UAV) tasks 
presented at three levels: low, medium, and high, denoted as LL, ML, and HL, 
respectively. The LL was the baseline state and subsequently encompassed most of each 
trial. The ML and HL were presented four times each, in a balanced order, lasting 
approximately 20 seconds each time. Each trial began in the LL and after every ML or 
HL was presented, it returned to the LL. The experimental design assumed that varying 
task load induced corresponding levels of cognitive load on the subject. Throughout this 
report, cognitive load is assumed to be a proxy measure of OFS; thus detecting a change 
in task load, is synonymous with detecting a change in OFS. 

The tasks involved monitoring four UAVs executing a bombing mission. During 
the ML and HL, subjects performed a visual search of a radar image uploaded at 
designated waypoints by the UAVs. The subjects panned the radar image, located 
potential targets, and marked six of them for bombing, according to pre-determined 
priorities. This had to be accomplished within the 20 second timeframe. The HL was 
more difficult than the ML as its radar image contained more distracter targets, in 
addition to imposing more complex targeting priorities. The baseline LL condition simply 
required the subject to monitor the UAVs flight paths until each waypoint, i.e. ML or HL, 
was encountered. Overall, the tasks were very visual in nature and were expected to 
engage the visual processing centers of the brain. 

The data collected for each trial consisted of eight physiological channels of EEG, 
EOG, and electrocardiogram (ECG) recorded at a sampling frequency of 200 Hz. The 
EEG channels were recorded from five electrodes: F7, Fz, Pz, T5, and O2. These electrodes 
were affixed to the subject's scalp according to the 10/20 International electrode system 



shown in Figure 2.1. Vertical and horizontal EOG data, termed VEOG and HEOG 
respectively, were collected for two purposes: primarily, as a measure of cognitive load, 
and secondly, to eliminate blink artifacts in the EEG signals. Finally, one channel of ECG 
was collected to measure heart rate. Only the EEG and EOG data were used in the 
following analyses. 

From this point forward, each trial will be denoted by a letter followed by a 
number; the letter represents the subject A, E, or F, and the number identifies whether it 
was the subject's first or second trial. For instance, A01 denotes data from the first trial of 
subject A. 

Front 

Right 
Side 

Back 

Figure 2.1 EEG electrode diagram 

2.1. Preprocessing the data 

Blink artifacts contaminate EEG signals when the electrical activity from a 
subject's eye is recorded by the EEG electrodes affixed to their scalp. This interference 
greatly distorts the EEG data and negatively affects subsequent analyses. Many filters 
have been developed to remove blink contamination, of interest here however, are filters 
that remove the artifacts online, rather than in a post-processing scheme. One form of 
online artifact removal is adaptive filtering. The adaptive filter incorporates the VEOG 
and HEOG signals as reference inputs to de-contaminate an EEG signal, s(i), for every 
time moment i. The artifact-free signal, e(i), results by 

6(0=5(0-^(0-^(0 (2.1) 

where, 



M 

7^(0 =  }   hv(m)rv(n + 1 - m) 

(2.2) 
m=l 

M 

*h(0 =  X hh(m)rh(n + 1 - m) 
m=l 

are filtered VEOG and HEOG reference signals, respectively. The hv(m) and hh(m) 
terms represent finite impulse response (FIR) filters of length M, which are updated for 
every time period i, to filter the raw VEOG and HEOG signals. 

Updating the FIRs is accomplished through a recursive least-squares (RLS) 
algorithm presented in Table 2.1. The underbars denote column vectors and R(i) is a 
matrix. In the present analysis, the forgetting factor, X., was set to .9999 and M was set to 
a length of three. See He, Wilson, and Russell (2007) for complete details. 

Figure 2.2 (a) displays an EEG signal recorded at the F7 electrode, and (b) 
displays the VEOG signal recorded during the same period of time. Blink contamination 
is clearly present in (a), where sharp peaks indicate eye blinks. Notice these same blinks 
are reflected in (b), the VEOG signal, whose intent is to detect eye activity. The adaptive 
filter uses the VEOG signal to identify the blinks and to remove them from affected EEG 
signals, like F7, where blink activity is considered interference. Figure 2.3 depicts the 
contaminated F7 signal in (a), but this time with the corresponding filtered F7 signal in 
(b), after adaptive filtering. Notice that the sharp peaks characteristic of eye blinks are no 
longer present. 

Once eye blink artifacts were removed, the psychophysiological signals were 
subjected to Discrete Fourier Transform (DFT) for every epoch, usually three to five 
seconds. The DFT transforms signals from the time domain to the frequency domain. To 
accomplish this, the DFT assumes that the time domain signal is a sum of many 
sinusoids; this assumption is generally deemed appropriate for psychophysiological 
signals. The DFT and its inverse are computed by 

X(Cl)=   V  x[n]e->na 

n=—oo 
(2.3) 

1   f2n 

X(tl)einn da 

where £1 is the discrete-frequency variable and x[n] is a discrete time series, in this case 
obtained by sampling a continuous EEGVEOG signal (Phillips et al., 2007). 

Utilizing the DFT, a frequency spectrum was created for each epoch where the 
powers of particular wavebands, e.g. 8-12 Hz, known as alpha, beta, etc., were 
computed. Waveband power was computed as the average of each frequency's power, for 
frequencies falling within the waveband. The powers of particular EEG\EOG wavebands 
have been shown to correlate with changes in cognitive load (see Table 2.2). For 
instance, alpha waveband power, 8-12 Hz, increases with relaxation while theta 
waveband power, 5-8 Hz, generally decreases with relaxation (Smith et al., 2001). 



Table 2.1 Adaptive filtering algorithm 

1. Initialize: 

1.1. H_(i - 1) = 0 where H_=  -jj* and H* and H* are vectors of the filter 
I "hi 

coefficients, hv(m) and hh(jn), respectively 
1.2. [R(i - 1)]_1 = //a where I is a 2Mx2M identity matrix and er = 0.01 
1.3. M and ^. are user-defined 
1.4. i = M 
1.5. M is the length of the signal to be filtered 

2. Calculate K(i): 

[R(i - l)]_1r(i) 
£(0 = 

where r(i) = rv(0 

A + rCir^Ci-l)]-1^) 

where r„(£) and rh(i) are vectors of the VEOG and HEOG signal, 

respectively: 

*v(0 = [r,(0. rv(i - 1) rv(i + 1 - M)]T 

»fc(0 = [rh(Q,rh(i - 1) rh(i + 1 - M)]T 

3. Calculate efr^-J: 

4. Calculate//(i): 

ff(i)= w(t-i)+K(0e(-^-) 

5. Update [/?(0]_1: 

[ft(i)]-1 = A-H/?(i -1)]-1 - A-^corCO^^a -1)]-1 

6. Calculate e(i) : 

e(i)=s(i)-L(0TH(i) 

Note: This is the vector equivalent of (2.1) 

7. / = i + 1 

8. While i < n repeat steps 2 through 8 
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Table 2.2. EEG wavebands 

Waveband Frequency (Hz) Interpretation 

Delta 1-4 Slow wave sleep 

Theta 4-8 Arousal 

Alpha 8-12 Relaxation 

Beta 12-30 Active, alert, working 

Gamma 30+ Cognitive and/or motor function 

From this point forward, the waveband powers computed from 
psychophysiological signals recorded at particular electrodes are referred to as features. It 
is possible to compute hundreds of features for each epoch, as there are many different 
combinations of wavebands and electrodes. Methods which measure and detect real-time 
changes in OFS must determine which of these features are indicators of cognitive load, 
and which are noise. 

2.3. Statistical Analysis of the Post-Processed Data 

Empirical analysis was conducted on several psychophysiological features to 
characterize their properties and behavior with respect to subject and task load. For this 
analysis, the features were computed in three-second epochs. It is common to find one- 
second epochs in the literature, however, they often exhibit highly variable and erratic 
behavior. Moreover, short epochs induce autocorrelation in the features. In contrast, 
longer epochs are more stable, but if they are too long, they will be infeasible in 
operational settings where change occurs instantaneously. Three-second epochs were 
found to achieve the best balance between short and long epochs. 

The features chosen for this analysis are traditional features used in OFS 
classification methods. The wavebands of these features are: delta, 2-4 Hz, theta, 5-8 Hz, 
alpha, 9-13 Hz, beta, 14-32 Hz, and gamma, 33-43 Hz. Features from these wavebands 
have shown to correlate strongly with cognitive load, thus they are often used to classify 
OFS. 

Figure 2.4 displays the distributions of theta, alpha, and beta waveband powers 
computed across all electrodes for every epoch. The data from every trial were combined 
to form the distributions, after the data were standardized to zero mean and unit variance 
with respect to each trial. As shown, the distributions are non-normal, displaying a strong 
positive skew. The beta waveband power is especially skewed and nearly resembles a 
Poisson distribution. These distributions were subjected to statistical tests for non- 
normality and each was strongly significant at the .05 level, indicating that features from 
these wavebands originate from non-normal distributions. 

Recall that all seven electrodes record the same five wavebands for every epoch. 
The reason for this seemingly "redundant" data is that brain waves behave differently 



when emitted from different regions of the brain. For instance, alpha power is greatest in 
parietal regions, e.g. Pz, whereas theta power dominates the frontal region, e.g. Fz. While 
differences exist between topographical locations, there still remains significant 
correlation, or dependency, between identical wavebands collected at different 
electrodes; hence not every feature records unique information. 

To illustrate the correlation between features, Table 2.3 contains the correlation 
coefficients of features recorded at VEOG of F01. Notice that every feature was 
positively correlated with an average correlation coefficient of .819. In this sense, one 
feature from FOl's VEOG electrode could virtually represent all the information recorded 
there. The understanding of this phenomenon implores selecting a variety of features, 
from different electrodes, so they each contain unique information about the subject's 
cognitive state. 

Histogram of Theta. Alpha. Beta 

Theta 

i       L r 
4      »      2      4      «       »      • •i    -1    «     1     2     3     A     % 

-2-141234      S 

Figure 2.4 Histograms of theta, alpha, and beta wavebands collapsed across all subjects 

Many of the features exhibited another form of correlation, called autocorrelation. 
Autocorrelation occurs when an observation, , recorded at time i+k, is dependent 
upon a previous observation, , where k is the time lag. Thus, if an autocorrelated feature 
is observed at time i, it will contain information about its value k time moments in the 
future (Montgomery et al., 2008). Autocorrelation is identified by evaluating the sample 
autocorrelation function for a finite time series, , defined by 

(2.4) 
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where ck and c0 are computed from 

n-k 

cfc = - > (xt - x)(xi+k -x) fork = 0,1,2,..., K 
n t—i 

(2.5) 

Beta and gamma features consistently exhibited autocorrelation. Figure 2.5 
displays the sample autocorrelation function for a beta feature measured at T5 of E01. At 
lag 1, the autocorrelation is the strongest and then exponentially decreases before 
oscillating around 0. This behavior is characteristic of a first-order, autoregressive time 
series (AR[1]). 

A survey of feature autocorrelation was conducted across subjects. The results are 
summarized in Table 2.4. For each waveband, a percentage is displayed representing the 
proportion of electrodes where the feature exhibited significant autocorrelation. For 
instance, the alpha waveband for A01 generated features which were autocorrelated in 
three of the seven electrodes, i.e., 42.86%. As shown, the wavebands which generated the 
least autocorrelated features across subjects were theta and alpha. In contrast, beta and 
gamma wavebands gave rise to features that were autocorrelated regardless of subject or 
electrode. 

Table 2.3 Inter-node correlation measured at VEOG of F01 

Delta Theta Alpha Beta Gamma 

Delta 1.000 0.922 0.939 

0.949 

0.852 

0.864 

0.914 

0.582 

0.655 

0.663 

0.853 

Theta 0.922 

0.939 

0.852 

0.582 

1.000 

Alpha 0.949 

0.864 

0.655 

1.000 

Beta 0.914 

0.663 

1.000 

Gamma 0.853 1.000 

It is also important to characterize how the properties of psychophysiological 
features change with time. More specifically, it is necessary to investigate if these 
features exhibit stationary behavior. Stationarity implies a statistical equilibrium, where 
the properties of a time series, such as its autocorrelation or probability distribution, are 
stable over time. A time series is strictly stationary when the joint probability distribution 
of observations Xi,xi+1, ...,xi+n is the same as the joint distribution of 
xi+k>xi+k+i> •••>xi+k+n- However, it is often sufficient to classify a time series as 
stationary as long as it varies around a fixed mean (Montgomery et al., 2008). 
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Figure 2.5 Sample autocorrelation function for T5 beta of E01 

Note: the red lines denote .05 significance levels 

Table 2.4 Results of autocorrelation survey 

A01 E01 F01 Average 

Delta 0.00%    57.14%   71.43% 

14.29%   28.57%   42.86% 

42.86%   28.57%   42.86% 

100.00% 100.00%  85.71% 

42.86% 

28.57% 

38.10% 

95.24% 

100.00% 

Theta 

Alpha 

Beta 

Gamma 100.00% 100.00% 100.00% 

By the latter definition, non-stationary features will exhibit some type of trend, for 
instance, their mean might increase with time. These trends can be determined by plotting 
a feature's autocorrelation function. If the plot displays slowly-decreasing autocorrelation 
with increasing lag, a feature is classified as non-stationary. When this analysis was 
conducted on a sample of features from each waveband, none of the features exhibited 
the symptoms of non-stationarity. Instead, they each varied around a fixed mean as in the 
example shown in Figure 2.6. 

Finally, an empirical analysis was conducted to characterize the relationship 
between features and varying task load; these results are in Appendix A. Although no 
casual relationship between psychophysiological features and task load are firmly 
established, many studies have asserted strong associations, such as increasing alpha 
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power with decreasing task load. The features that are most valuable to OFS classifiers, 
are those that monotonically increase or decrease with changing task load. If this 
relationship is present, then these features can provide information on a subject's 
cognitive load. Moreover, it would be ideal if particular features had the same correlation 
to task load regardless of the subject; however, the results of this empirical analysis found 
no such "universal" feature. Instead, the features of each subject exhibited unique 
behavior with respect to task load. 

Despite the inability of features to generalize across subjects, there existed at least 
one feature for each subject which monotonically increased or decreased with task load. 
Thus by selecting features tailored to each subject, it is possible to gain reliable 
information on OFS. In fact, nearly all OFS classifiers adhere to this "subject-specific" 
approach (Wilson, Russell, 2003a; Smith et al., 2001). 

Figure 2.6 Stationary plot of Fz theta for A01 

3.      Independent     Component 
Psychophysiological Time Series 

Analysis      of     Multidimensional 

Independent component analysis (ICA) is a method used to extract the underlying 
components of signals. ICA assumes that physical processes, like the brain, are 
comprised of distinct operators which emit signals independent of each other. When these 
signals are recorded by sensors, they become "mixed" and indistinguishable. ICA is a 
method for separating these mixed signals into their underlying components (Stone, 
2002). 
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For instance, two EEG electrodes record brain activity at different locations on 
the scalp. The signals recorded from these electrodes, denoted as *i(0 and x2(i), are 
assumed to be a mixture of components, s^i) and s2(i), originating from independent 
operators in the brain. Xi(0 and x2(i) are expressed as linear combinations of the source 
components, 

XiCO = OUSJCO + o12s2(i) 
(3.6) 

*2(0 = «2i5i(0 + a22s2(i) 

The objective of ICA is to reveal the source components using only the recorded 
EEG signals, x^i) and x2{(). As shown in (3.6), this requires determining the 
coefficients ai;-. This is a difficult task, however, it is made feasible by assuming the 
source components are independent of each other, hence "independent components" 
(Hyvarinen, Oja, 2000). 

ICA is more generally defined by considering the system of equations in (3.6) in 
vector-matrix notation, 

x(i) = As(i) (3-7) 

where A is the mixing matrix, the recorded psychophysiological signals are in vector 
x(i), and the independent components are in vector s(i), for each epoch i. Once A is 
determined, its inverse, W, is used to compute the independent components for every 
realization, x(i), by 

s(i) = Wx(i) (3.8) 

Notice that x(i) is what is observed, but s(i) is what needs to be computed. 
Thus, similar to PCA, the independent components are determined indirectly and called 
latent variables (Hyvarinen, Oja, 2000). Moreover, ICA is the most common means of 
blind source separation (BSS), where underlying factors are determined "blindly". An 
assumption of BSS, which ICA necessarily makes, is that the number of independent 
components is limited to the number of recorded signals. For instance, in the present data 
there were seven EEG and EOG signals recorded, thus, ICA assumes each were a mixture 
of seven independent components (Stone, 2002). 

Some fundamental assumptions of ICA have been mentioned, but more 
assumptions are necessary to make ICA feasible. In order to achieve components which 
are independent, it is necessary to assume the components are non-Gaussian distributed 
(i.e. non-normal). In this study, independent components are established by constructing 
a mixing matrix which maximizes non-Gaussianity. Next, the source signals are assumed 
to propagate through a medium, in this case brain tissue, instantaneously, before being 
linearly mixed at the electrodes. Finally, the source signals are assumed to be stationary. 

ICA is made robust to moderate violations of these assumptions through the 
FastICA algorithm, detailed below. The major assumption which cannot be 
compromised, however, is the number of source signals assumed to exist. For the present 
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purpose, this number is less important than finding components which are meaningful to 
OFS change detection (Makeig et al., 1996; Vigario et al, 2000). 

Finally, ICA differs fundamentally from PCA, despite their similarities. They are 
both multivariate analyses, whose latent variables are linear combinations of observed 
variables. However, PCA's primary goal is dimensionality reduction, whereas ICA 
creates a generative model to reveal the underlying factors of a process. Additionally, 
PCA merely de-correlates its latent variables. Under the assumption of normality, de- 
correlation is sufficient to achieve independence. However, psychophysiological signals 
have consistently displayed non-normal behavior, implying that PCA's de-correlation 
does not result in truly independent components. In contrast, ICA imposes stricter 
constraints which achieve un-rotatable, de-correlated, and independent components 
(Stone, 2002). 

Pre-Processing the Data for Independent Component Analysis Before conducting 
ICA, the data must be pre-processed. The data are made to be zero mean, resulting in 
independent components which are also zero mean; this is done to facilitate the 
estimation of A. After it is estimated, the mean is added back to the independent 
components. 

Next, the data are whitened to make A orthogonal which significantly reduces the 
number of parameters ICA must estimate. Whitening linearly transforms x(i) into a new 
vector, x(i), that is uncorrelated and has unit variance. Whitening can be done through 
eigenvalue decomposition (EVD). Using the same notation, x(i) is computed by 

x(i) = UL-V2V'x{i) (3.9) 

This step can also be used to dimensionally reduce the independent components, which 
serves to decrease noise and prevent overfitting (Hyvarinen, Oja, 2000). 

The FastICA Algorithm Once the data are pre-processed, an efficient algorithm called 
FastICA is used to estimate W. FastICA determines the columns of W, denoted as w;, 
one-by-one, by maximizing the non-Gaussiantity of the projection, Wj'x(V). There are 
several measures of non-Gaussianity, among the most common is negentropy. 
Negentropy is an entropic metric that captures the "randomness" of a variable. Because 
Gaussian variables are the most random, they have the highest entropy among all random 
variables. Therefore, FastICA indirectly maximizes non-Gaussianity by pursuing the least 
entropic variables as measured by negentropy. As mentioned, the non-Gaussianity of 
components is essential to achieve their independence. An approximation of negentropy, 
7(y), is computed by 

J(y) = (E[G(y)]-E[G(v)]y (3.10) 

where G is a non-quadratic function, y and v are both zero mean and unit variance 
variables, and v is Gaussian distributed. In this metric, if y is also Gaussian then 
negentropy is zero; any other distribution of y results in positive negentropy, with 
magnitude proportional to y's deviation from Gaussianity. In the present project, the non- 
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quadratic function was specified as, G(y)=y4, rendering (3.10) a kurtosis-based 
approximation of negentropy. 

The FastICA algorithm is presented in Table 3.2. Steps 2.3 through 2.5 iteratively 
refine a randomly chosen vector, Wj, until it converges. Convergence occurs when a new 
Wj points in the same direction as the vector from the previous cycle of steps 2.3 and 2.4. 
Once convergence occurs, step 2.8 employs a deflation procedure to prevent different Wj 
vectors from reaching the same maximum; deflation de-correlates the outputs of 
w'1x(i),w'2x(i),...,wn'x(i). Finally, step 2.9 renormalizes Wj after deflation. The 
algorithm iterates until W is fully defined. 

Independent Component Analysis to Facilitate Real-Time OFS Change Detection 
In past research, ICA has been conducted on physiological signals for two purposes: to 
identify and extract artifacts, such as eye blinks, and to facilitate the analysis of event- 
related potentials (ERP). There are many artifacts in psychophysiological signals, such as 
neck muscle activity, eye blinks, heart rate, and line noise originating from recording 
equipment. In some cases, the artifacts' amplitude exceeds the brain activity, the very 
thing intended to be measured. Therefore, it is critical to identify and extract these 
artifacts before using psychophysiological features to detect change in OFS. ICA can 
automatically extracts most of the prominent artifacts, producing less complex and less 
noisy source signals (Vigario et al., 2000). 

ICA is also commonly used to analyze ERPs in EEG signals. ERPs are spikes in 
brain activity that result from the onset of a stimulating event, like hearing a "beep". It is 
believed that ERPs originate from different sensory systems in the brain, corresponding 
to the sense being stimulated, like sight, sound, and touch. To identify the location of 
these sensory systems, experiments are conducted which simultaneously stimulate 
multiple senses of a subject while recording their EEG. The ERPs are contained in the 
EEG, but are mixed upon recording. ICA is then applied to "un-mix" these signals and 
generate independent components corresponding to the ERPs which originated from each 
sensory system (Vigario et al., 2000; Makeig et al., 1996). 

To the best of our knowledge, ICA has yet to be employed to facilitate the online 
change detection of OFS. Nevertheless, ICA is a promising candidate for this application 
since it has been effective at artifact extraction and generating independent components 
that correspond to external stimuli. The objective is to use ICA to extract source signals 
which are free of artifacts and responsive to varying task load. 
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Table 3.1 FastICA algorithm 

1. Initialize: 
1.1. y=l 
1.2. n is the number of independent components 

2. Run Algorithm: 
2.1. fory<« 
2.2. Choose a random vector Wj 

2.3. 
wj* = E[x(i)G'(w/x(i))] - E[G"(WJ'X(1))]WJ 

Note: expectations are estimated by sample means. 

2.4. 

2.5. if not converged, go back to 2.3 
2.6. else if j =1 go back to 2.1 
2.7. end if/else 
2.8. 

7-1 

2.9. 

2.io.     y=y+i 
2.11.    end for 

Wj = 

Wj Wj 

3.   Output: the inverse mixing matrix, W 
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Analyzing the Independent Components For each subject, all seven EEG and EOG 
signals were submitted to ICA and the resulting independent components were analyzed. 
In every case, at least two independent components correlated directly with eye activity 
measured at VEOG and HEOG; this is consistent with the visual demands of the UAV 
tasks. This phenomenon repeated itself when only EEG signals were submitted to the 
ICA, hence providing strong evidence that eye activity contaminated the EEG data. 
Figure 3.1 depicts two independent components extracted from the five EEG signals of 
E01; it clearly displays their correlation to the VEOG and HEOG signals that were not 
included in the analysis. 

The independent components that were highly correlated with VEOG and HEOG 
signals were deemed "artifact" signals and were excluded from further analysis. The 
remaining components were empirically analyzed to determine what brain process they 
represented. This was accomplished by constructing a frequency spectrum for each 
component, to reveal the frequencies that dominated them. Again, the DFT, as shown in 
(2.3), was used to convert the components from the time domain to the frequency 
domain. 

Figure 3.2 depicts the frequency spectrums of four independent components from 
AOL Each component was partitioned in HL, ML, and LL sets and submitted to the DFT 
in three-second epochs. The results from the DFT were averaged across all epochs to 
form three frequency spectrums, one for each task load. As shown, each independent 
component exhibited unique frequency spectrums, some of which varied by task load. 
For instance, plot (c) displays the strong influence 10-12 Hz waves had on the third 
independent component. Moreover, the power of these waves varied by task load. 

In fact, every subject had at least one component that was strongly influenced by 
8-12 Hz waves, corresponding to the alpha waveband. Recall that this waveband 
correlates to relaxation; as a subject becomes more relaxed, their alpha power increases. 
This is consistent with plot (c) of Figure 3.2, where alpha power is highest in the LL and 
lowest in the HL. 

Finding alpha's presence in the psychophysiological signals of cognitive tasks is 
not surprising, but revealing its prominence with such clarity is rare. Alpha power is 
frequently obscured by noise when signals are mixed and recorded at the scalp. ICA 
segregated these noisy signals from the source signals and clearly displayed alpha's 
contribution. Makeig et al. confirmed this result, reporting that ICA revealed "alpha 
activity (near 10 Hz) not obvious in the EEG data" (1996). This highlights another result, 
that alpha power most often peaked around 10 Hz in the independent components. This 
particular frequency's significance has been established in other research, where it has 
been shown to correlate with performance on cognitive tasks (Makeig, Inlow, 1993). 
Research has also shown 10 Hz to be associated with spatial tasks, more so than verbal 
ones (Gevins, 1997). This is consistent with the present results, since the UAV tasks were 
largely spatial in nature. 

Analyzing the frequency spectrum of a subject's independent components may 
prove useful in detecting changes of OFS. An abundance of research has employed the 
frequency domain of EEG signals for classification, most commonly to analyze the 
traditional wavebands of delta, theta, alpha, beta and gamma. Perhaps a more effective 
strategy would be to use independent components to derive subject-specific and task- 
specific wavebands. An analysis similar to the one depicted in Figure 3.2 could be done 
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for each subject to identify frequency bands which are sensitive to changes in task load. 
Wilson and Fisher report using subject-specific wavebands derived from latent variables 
to increase classification accuracy by 29% over traditional wavebands (1995). In another 
case, estimating the error rates on task performance was improved significantly by using 
a subject's entire EEG spectrum over predefined, narrow wavebands (Jung et al., 1997). 

However, one shortcoming of this method is the subjective process of selecting 
frequency bands from the independent components. It requires expert knowledge to 
identify which components represent artifacts, to understand how brain activity responds 
to different tasks, and finally, to decide which frequency bands are sensitive to task load. 
These ambiguities can be mitigated through dimensionality reduction, where multiple 
psychophysiological signals are reduced to result in a pair of independent components. 
From this reduction, an independent component may emerge with properties which are 
easily identifiable and robust across subjects. The next section discusses this approach. 

Dimensionally Reduced Independent Components During the pre-processing for 
ICA, eigenvalue decomposition (EVD) was used to whiten the data. EVD is equivalent to 
PCA, and like PCA, it can dimensionally reduce the psychophysiological signals to a 
subset of important components. Dimensionality reduction prevents overfitting of the 
independent components and decreases noise, not to mention, reduces the vast number of 
features into a small, yet crucial subspace. Most importantly, dimensionality reduction 
reveals the independent components responsive to task load with less ambiguity. 

EVD was used to reduce the seven EEG and EOG signals to a pair of signals for 
submission to ICA. Reducing the signals from seven to two was justified by a Pareto 
chart analysis which, for every subject, displayed a clear break at two when plotting the 
eigenvalues in descending order. The resulting pair of signals was submitted to ICA 
which generated two independent components. These components were then plotted in 
and empirically assessed for any correlation they had with task load. 

This method yielded consistent results when conducted on each trial. In every 
case, one independent component exhibited clear variation with changing task load, while 
the other was mostly noise. Figure 3.3 displays the results of A01, where (a) is the 
component responsive to task load and (b) is the noise component. Notice that the 
independent component in (a) became attenuated during the HL and ML, compared to its 
variation in the LL. The second component in (b) exhibited similar behavior, but was not 
consistent for every task and was obscured by noise. The utility of the first component for 
real-time OFS change detection is promising since: one exists for each subject, its 
behavior is distinguishable by task load, and finally, the ICA method is automatic and 
leaves little error-prone subjectivity. 

Further investigation of the dimensionally reduced independent components 
disclosed strong correlations with the VEOG and HEOG signals. Previously, the 
independent components correlated with VEOG and HEOG were excluded from further 
analysis since they were deemed "artifacts". However, in the present analysis these 
components were extracted as the source signals for all the EEG\EOG data, thus they 
were retained. 



20 

T^T 

5_ 

j i x .-•" l0 ^r    o*    o    (N    -^ 

1 F ~TT 

o      o      o 
8    8 

^r      CN      o      c\i      ^ 

i 

V 

© 

o 

I 
• I— 

a 
o 

fc c 
c3 

o 
Z rg 

o £ U i •—s 

• 

05 *—- 
o o 

£ 
u 

C3 

m 
u 

LJ- 

ja/viOci 



21 

J8M0d J8«0d 

U 

U 

y 

o 
< 
E 

o 0 
* 
2 
n 
a 
c 
n. 
E 
o -~> 

•*—i 
o a 

CJ 
-o 
B 
U a. 

m u " -a c 
tw 
o 

CO E 
2 
-*-J 

•_> 

ifl o 
CM c 

•S} 

1 >. '_> 
° B C 

o 
3 

e cr 
o — 

m h 
CN 
m 
u 

JBMOd 



22 

Table 3.3 and Table 3.4 contain the correlations between the original 
psychophysiological signals and the first and second independent components, 
respectively. The correlations are averaged across trails by subject. Subject F is 
considered separately since, when his components were plotted, they exhibited unique 
behavior. Subject F has consistently been the most difficult to accommodate in a variety 
of methods, and the correlation analysis provided clues as to why. 

Table 3.3 Correlation analysis of dimensionally reduced 
first independent component 

VEOG HEOG Fz F7 Pz T5 o2 

Subjects A, E 0.903 

0.977 

0.107 

0.075 

0.835 

-0.380 

0.385 

-0.137 

0.389 

-0.261 

0.297 

-0.228 

0.179 

-0.174 Subject F 

Table 3.4 Correlation analysis of dimensionally reduced 
second independent component 

VEOG HEOG F* F7 Pz T5 o2 

Subjects A, E 0.373 

0.213 

0.992 

-0.991 

0.067 

-0.104 

0.860 

-0.870 

0.281 

0.045 

0.036 

-0.159 

0.475 

0.227 Subject F 

In Table 3.3, notice the strong correlation the first independent component had 
with the VEOG signal across subjects. Another notable correlation for subjects A and E, 
is with the EEG signal recorded at Fz. However, this is not true for subject F, who 
averaged less than half the correlation at Fz than subjects A and E. 

The second independent component, in Table 3.4, correlated with one EOG and 
one EEG signal, similar to the first component. But in this case, the correlation was with 
HEOG and F7, respectively. Notice that subject F's behavior was not appreciably 
different than the other subjects. 

This analysis elucidates several important findings, principally, that the source 
signals of the EEGYEOG were strongly correlated to eye activity. This is useful 
knowledge, as otherwise, VEOG and HEOG contaminated signals may be discarded as 
artifacts rather than treated as important. As mentioned, one of the two independent 
components always varied with task load and the other was mostly noise. For subjects A 
and E, the independent component which best varied with task load was the first. The 
correlations in Table 3.3 indicate that this component was a mixture of signals from 
VEOG and Fz. Recall that the Fz electrode mostly records theta waves which are sensitive 
to changes in cognitive load. This was true except for subject F, who did not have a 
strong Fz presence in the first component. In fact, subject F's first component was noisy 
and it was his second component, the one dominated by HEOG and F7, that best varied 
with task load. Two things can be inferred from this: first, ICA can reveal the source of 
between-subject differences, and second, those differences can be overcome with at least 
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one independent component that is sensitive to task load. Henceforth, the independent 
component that best varied with task load, post-dimensionality reduction, is referred to as 
the TVIC (task-varying independent component). 

4. Real-Time Metrics for Psychophysiological Signals and Algorithms 
for Temporal Change Detection in Time Series Data 

The Peak Detection Method Now that a robust signal, the TVIC, can be identified for 
each subject, a quantitative metric is necessary to characterize the signal for each epoch; 
this metric will be used to facilitate the online change detection of OFS. The TVIC 
plotted in (a) of Figure 3.3 suggests that a metric of variance might best characterize the 
signal's response to task load, since variance noticeably increased during the LL and 
drastically reduced during the ML and HL. Ideally, monitoring a metric like variance, 
computed for each epoch, would result in a signal with less noise and better 
discrimination between task loads than the raw TVIC. In essence, the magnitude of the 
metric would "peak" when the tasks are incurred, thus signifying changes to higher 
cognitive loads. 

Although variance is an obvious choice, there are other quantitative metrics to 
characterize a signal in real-time, such as the third moment (skewness), the fourth 
moment (kurtosis), and finally, entropy based metrics. These metrics may also prove 
sensitive to the onset of tasks and even result in superior change detection. 

An objective method was needed to evaluate and compare each metric's ability to 
produce consistent task-induced peaks. One such technique is called the peak detection 
method (PDM). The PDM compares a measure Xi at epoch i with two thresholds, an 
absolute threshold defined by parameter y and a relative threshold defined by parameter 
8; the comparisons are made to determine if a peak has occurred. 

For the PDM, each metric was computed by a sliding window so that 
irregularities were smoothed and peaks were induced during the tasks. The PDM was 
used to objectively evaluate which metric most consistently peaked for all 8 HL and ML 
tasks, while generating the fewest false alarms. Hence, the results of the PDM indicated 
which metric best detected change in OFS. The algorithm for the PDM is presented in 
Table 4.1 (Yu, 2009). 
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Review of Metrics for Characterizing Psychophysiological Signals The simplest 
metric for characterizing the TVIC is the standard deviation. The standard deviation is the 
positive square root of the signal's second moment, defined as 

a = JM-J (4.1) 

where My is 

M    gLifo   MV (42) 
' n 

fi is the mean of the signal, generally estimated by the sample mean, x, computed from a 
sample of size n. For the standard deviation calculation, n is traditionally reduced by one 
in the denominator of (4.2) (Montgomery, 2009). 

A related metric is the third moment of the TVIC, termed skewness when 
normalized, which measures the asymmetric nature of a distribution. The TVIC in plot 
(a) of Figure 3.3 displays clear skewness in the distribution of its amplitudes during the 
LL, but much less skewness during the tasks. Skewness is defined as 

M3 
Y = 

Ml12 (4.3) 

(Montgomery, 2009). 
The fourth moment may also prove a valuable metric as it characterizes the shape 

of a distribution, discriminating distributions that are tall and skinny from those that are 
short and stout. When standardized, the fourth moment is termed kurtosis, and because it 
is fourth order, it is always positive. Kurtosis is defined as 

k = Mi <4-4> 

(Montgomery, 2009). 
The next two metrics are both measures of entropy, where entropy quantifies the 

"randomness" of the TVIC. The more random the data, the higher entropy it will have, 
conversely, the more ordered the data, the less entropy it will have; data in perfect order 
has zero entropy. In recent research, entropy measures of psychophysiological data have 
been found to correlate with changing states of vigilance, in particular, entropy increased 
with increasing vigilance (Bruzzo et al., 2008; Zhang et al., 2009). This result suggests 
entropy metrics may be able to detect changes in OFS. 

The first entropy metric considered, called sample entropy (SampEn), is a non- 
linear metric that measures the regularity of a time series (Richman et al., 2004). SampEn 
was chosen because it is computationally efficient and can be applied to short, noisy data 
typical of the TVIC. In addition, SampEn is an improvement over the more traditional 
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time series entropy, approximate entropy (ApEn); SampEn exhibits less bias towards 
lower entropy, improves the measure's relative consistency between datasets, and is more 
robust with regards to varying record lengths (Richman, Moorman, 2000). 

SampEn measures the regularity of a time series by computing the conditional 
probability that two arbitrarily similar epochs of size m, remain arbitrarily similar for the 
next point in the series. "Arbitrary" is used here to emphasize a degree of error allowed 
when classifying two epochs as similar. This is controlled by the parameter r, typically a 
factor between .1 and .25 of the record's standard deviation. By SampEn's definition, a 
perfectly ordered series will have a conditional probability of one, corresponding to 
entropy of zero. Time series with less order will have positive entropies and conditional 
probabilities less than one (Richman et al., 2004). The algorithm to compute SampEn is 
in Table 4.2 (Alcaraz, Rieta, 2008). 

The second entropy metric, termed Kullback Liebler Divergence (KLD), 
measures the relative entropy between two probability distributions, p = {pk} and 
q = {qk}. In the present study, frequency distributions were analyzed instead of 
probability distributions, where A: is a frequency and pk is the normalized density at k, 
similarly for qk (Quiroga et al., 2000). The KLD computed the relative entropy between a 
static frequency distribution constructed from the LL data, and a frequency distribution 
that changed with a sliding window over the TVIC. The hypothesis was that the 
frequency distribution from the HL and ML differed markedly from the LL distribution, 
thus KLD would peak during these tasks. 

KLD is always positive and its magnitude is proportional to the difference 
between distributions; it is zero for identical distributions. KLD is computed by 

KLD(p\q) = XPfe'n(!r) (4-5) 

K. 

Results of the PDM on Various Metrics Several different metrics were presented, 
each with the ability to characterize the task-varying nature of the TVIC. The PDM was 
used to objectively evaluate which of the metrics most consistently peaked for tasks. This 
section presents those results, and identifies the metric which is best suited for online 
OFS change detection. 

The standard deviation, skewness, and kurtosis metrics were all computed by a 
sliding window over each subject's TVIC. The span of the window was 18 seconds, 
providing an update of the metric each second. The length of the span was chosen for 
optimal peak production, as 18 seconds corresponds to the duration of the tasks; hence, at 
one point the span of the window would precisely overlap an entire task, resulting in the 
most extreme realization of the metric, i.e., the largest peak. The span may seem 
extensive, but it was necessary to smooth the metrics and resolve any task-induced 
trends. 

For the following analyses, the S and y parameters of the PDM were optimized 
with respect to each subject and metric under evaluation. This strategy is consistent with 
operational requirements, as between-subjects variation is too profound to generalize 
parameter settings. An example of the standard deviation of the TVIC from E02 is plotted 
in Figure 4.1; the standard deviation is negated for interpretability and the peaks detected 
via the PDM are indicated by cross-hairs. All 8 tasks were detected. 
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Table 4.1 PDM algorithm 

1. Initialize: 

1.1. Testing set, S = {x1(x2, .-,Xn} 

1.2. S, y are user specified 

1.3. Lmax = °°   > 'max~ 0 

1.4. L'tnin = °°   > 'min= 1 

1.5. e = i 
1.6. /»=0,/=0 
1.7. j=l 

2. Run Algorithm: 

2.1. while i < n 

2.2. if Xi > Lmax 

2.3. '-•max  — %i> 'max ~~ ' 

2.4. end if 
2.5. it Xj < Lmin 

2.6. L'min ~ %i 

2.7. end if 

2.8. if F ==1 
2.9. if x{ < Lmax ~ $ AND Lmax > y 
2.10. P*-PuLmax 

2.11. I ^ IV lmax 

2.12. B = 0 

2.13. '-'min ~ %i 

2.14. end if 
2.15. else if xt > Lmin + <5 
2.16. '-'max  ~ %i 

2.17. 'max~l 

2.18. B=\ 

2.19. end if/else 
2.20. i=i+\ 
2.21. end while 

3. Output: peaks and their indices are contained in sets P and /, respectively 
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Table 4.2 SampEn algorithm 

1. Initialize: 

1.1. N is the length of the record 
1.2. m and r are user defined parameters 
1.3. Form vectors of length m,xm(l), xm(2),...,xm(N — m + l) 

1.3.1.      *m(i) = [x(i),x(i + 1), ...,x(i + m— 1)] Vi 
1.4. Bj, /Ij, fim, >4m, D are initialized to zero 
1.5. /=i,;=i 

2. Run Algorithm: 

2.1. while i < N - m + 1 
2.2. b = 0 
2.3. while./ < N - m + 1 AND; ^ i 
2.4. Select two vectors xm(i) and xm(j) 
2.5. 

D =    max   |x(i + fc) — *(/ + k)\ 
fc=0,..,m-l 

2.6. ifD<r 
2.7. b = b + l 
2.8. end if 
2.9. end inner while 
2.10. 

2.11.    end outer while 
2.12. 

£,= N -m-1 

N-m 

Sm = N^Zfi' 
i=l 

2.13.    Repeat steps 1-3, except for vectors of length m + \.j ranges from 1 to 
N — m and replace b with a, and 5 with A 

3.   Output: 
[i4m 

SampEn = —In — 
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SampEn was also computed by a sliding window, in this case, with a span of 10 
seconds. The span was shorter because a second window was applied in addition to the 
first. SampEn exhibited brief, erratic outliers whose false peaks were not sufficiently 
smoothed by a single window. To compensate, a second window was applied over the 
first-windowed TVIC, and for each set of 10 points, it computed the area under the curve, 
i.e., approximated the integral. The double-windowing smoothed false peaks, as their 
short duration was not associated with large area under the curve. Figure 4.2 displays an 
example of this for A02. In (a), the first sliding window of SampEn was applied to the 
TVIC. Notice the presence of several short, narrow outlier peaks in contrast to the wider 
peaks exhibited during each task. Plot (b) is the integral from the second sliding window 
over the first windowed signal in (a); it demonstrates the dampening of outlier peaks and 
the correct detection of all 8 tasks with no false alarms. The parameters from SampEn 
were set as follows: r to .2 times the standard deviation of the record, m to 2, and the 
record length, N, to 2000 (Richman et al., 2004). 

The last metric analyzed was the KLD which computed the relative entropy 
between two frequency distributions. The static frequency distribution was derived by 
averaging the frequencies of each 10 second epoch from the LL of an entire trial's TVIC; 
as before, the frequencies were computed via the DFT. The second distribution was 
computed in real-time from a sliding window over the subject's TVIC. The density of 
each frequency distribution was normalized, so the area under the distribution was one. 
After normalization, both the static baseline distribution and the real-time distribution 
were submitted to the KLD, for every second, to form a relative entropy signal. 

The span of the sliding window for the KLD was again set to 10 seconds, because 
as with SampEn, the KLD necessitated a second window to dampen outlier peaks. As 
before, the second window slid over the initial windowed signal and computed the area 
under the curve for each set of 10 points. Figure 4.3 is an example for E02 where plot (a) 
is the KLD windowed over the TVIC and plot (b) is the integral from the second sliding 
window over the first windowed signal in (a). Similar to Figure 4.2, the double 
windowing smoothed outliers while amplifying the task-induced peaks to detect 7 of the 
8 tasks. 

The overall results of the PDM analysis are in Table 4.3. The proportion of 
correctly detected tasks is listed for each metric by trial. Average accuracy and false 
alarm rate is also reported in bold for each metric. According to the results, the standard 
deviation was the most proficient at producing peaks for each task. Using the standard 
deviation, the PDM detected 93.8% of the tasks with only .5 false alarms per trial on 
average. The standard deviation dominated all other metrics, i.e., for no subject or trial 
did another metric perform better. SampEn also had strong performance, detecting 81.3% 
of tasks on average, but it failed for subject F. The next most consistent metric was 
kurtosis, with 68.8% of the tasks correctly detected on average. Recall that kurtosis 
quantifies the shape of a distribution, meaning that with some success, task loads can be 
distinguished by the shape of the TVIC's amplitude distribution. KLD also utilized 
distributions, in this case, to quantify differences in entropy. The KLD metric detected 
64.6% of tasks on average in the PDM. 
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Table 4.3 Results of the PDM on various metrics 

Std. 
Deviation Skewness Kurtosis SampEn KLD 

A01 1.000 
1.000 
1.000 
1.000 
0.875 
0.750 

1.000 
0.250 
0.375 
0.750 
0.625 
0.625 

1.000 
0.750 
0.625 
0.625 
0.750 
0.375 

1.000 
1.000 
1.000 
1.000 
0.500 
0.375 

1.000 
0.750 
0.750 
0.875 
0.250 
0.250 

A02 
E01 
E02 
F01 
F02 

Average 0.938 
0.500 

0.604 
0.000 

0.688 
1.250 

0.813 
0.750 

0.646 
0.750 FA/Trial 

Discussion of Metrics and the PDM The PDM was used as a tool to objectively 
evaluate how well each metric could detect change in task loads. The PDM analysis 
yielded that the windowed standard deviation of the TVIC was the best. By monitoring 
this signal and metric for each subject, a change detection scheme could accurately 
identify when the subject changes state. 

The entropy metrics were also competitive in detecting tasks, but only for subjects 
A and E. Once again, subject F's psychophysiological signals proved difficult to 
accommodate, as they did not exhibit a recognizable entropy pattern. With data on more 
subjects, the entropy metrics may prove excellent in characterizing task-varying signals, 
on the other hand, it may be reaffirmed that entropies are largely subject-specific. 

Yu first introduced the PDM's application to the UAV dataset. He presented task 
detection results from the PDM on the windowed standard deviation of a subject's Fz 

signal (2009). The span of the sliding window was set to 18 seconds and the PDM 
parameters, S and y, were fixed. In order to make a fair comparison with these findings, 
the PDM analysis was repeated, this time with fixed parameters on the standard deviation 
of a subject's TVIC. The outcome of the comparison is in Table 4.4. 

The average accuracy using a subject's TVIC was 2% higher than using their Fz 

signal. While this is not a significant improvement, the PDM on the TVIC yielded less 
than half the false alarms on average when compared to the Fz signal. 

The results support the notion of using independent components instead of the 
raw psychophysiological signals for OFS change detection. Independent components are 
less complex and less noisy, and thus result in fewer false alarms. Not only do these 
results confirm ICA's ability to extract artifacts, they directly demonstrate ICA's ability 
to facilitate the detection of change in a subject's cognitive state. 

The PDM is a valuable tool, but its role should not be extrapolated to that of an 
online change detector. In the context of the present study, a peak is only defined once a 
metric reverses direction, and begins descending back to the LL baseline. In other words, 
a peak is only detected once the cognitive load returns to normal, long after a task has 
ended. Therefore, the PDM cannot be a true online change detector, as it can only detect 
tasks in retrospect. 
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Table 4.4 Results of the PDM on 
the standard deviation of Fz and TVIC 

Fz TVIC 
A01 1.000 

0.875 
1.000 
0.750 
1.000 
0.500 

1.000 
0.750 
1.000 
0.875 
0.875 
0.750 

A02 
E01 
E02 
F01 
F02 

Average 0.854 
2.000 

0.875 
0.833 FA/Trial 

The PDM does provide an interesting model, one that could be modified into a 
real-time scheme that detects a metric's task-induced trends. After identifying the 
standard deviation as the optimal metric to characterize a subject's TVIC, the next step is 
to employ the metric in a real-time OFS change detector. The following section 
introduces a novel algorithm, loosely based on the PDM, which monitors and detects 
task-induced trends instead of peaks. 

The Trend Detection Method A true online classifier cannot benefit from hindsight, 
meaning the information used to classify an epoch of data must come from that epoch 
and/or the information that preceded it. The PDM does not qualify as a true online change 
detector because it requires information about what transpires after an epoch in order to 
retroactively detect peaks. An online classifier must also be instantaneous, and most 
importantly, it must be accurate. 

The trend detection method (TDM) introduced in this section was developed to 
meet these requirements and to address the deficiencies of the PDM. The TDM assumes 
that the ML and HL will cause a windowed metric to monotonically increase (or 
decrease) from the LL baseline. This behavior was observed when monitoring the 
standard deviation of a subject's TVIC. The TDM identifies and detects these task- 
induced trends in order to detect real-time changes in OFS. 

The keys to trend detection are to identify significant trends through noise and to 
do so for non-stationary signals, where trends can begin at different magnitudes over 
time. The TDM addresses these challenges via an algorithm, presented in Table 4., which 
has two main components: an adaptive threshold and a trend detector. The adaptive 
threshold adjusts to non-stationary behavior and the second component, the trend 
detector, identifies task-induced trends. Detecting trends accomplishes two things: first, 
coupled with information on the signal's magnitude, a trend helps discriminate between 
true task-induced increases and irrelevant transient spikes. Second, depending on the 
length of the trend, tasks occurring below the threshold can be identified and adapt the 
threshold accordingly. 

The TDM judges a signal, xt, at time i against two criteria: its magnitude relative 
to the adaptive threshold and how well the previous points, xi_1,xi_2- —,Xi_n, have 
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trended. Trends are identified by counting the number of positive "slopes" between 
consecutive points over a period of time, where T is the count. A positive slope is defined 
when Xi > Xf-j. The slopes need not be consecutive since noise may cause temporary 
reversals in the trend; reversals will only dissolve a trend if, after a period of time, no 
point falls above the trend's last point, say, xt. This time period is defined by the 
parameter Rum. If, however, Rlirn is not exceeded and some point, xi+n > xt, then 
T = T + 1 and the trend detection continues. When > Tiow, the second phase of the 
algorithm is commenced. 

Once an emerging trend is identified, the last value in the trend, xt, is compared to 
the threshold, Z, to determine if a task-induced cognitive load has occurred. If xt > Z, the 
trend is classified as task-induced. In contrast, if xt < Z, the emerging trend remains 
unclassified but continues to be monitored until T > Tup, where Tup is a newly defined 
limit. In summary, the second phase of the algorithm classifies trends in one of two ways: 
the first is when the trend outright breaches Z, and the second, is when the trend is 
occurring below Z, but is sustained long enough to be deemed task-induced. Tup 

quantifies "long enough" by accounting for the distance xt falls below Z; the further 
below Z, the longer trending must continue in order to be classified. The motivation here 
is to account for non-stationarity while preventing the classification of trends not 
associated with a task load. 

If a task-induced trend is classified below the current Z, the threshold updates by 
an EWMA that weights the magnitudes of previously classified trends with the most 
recent trend, through a smoothing parameter X. This mechanism adapts the threshold so it 
can detect task-induced trends occurring at different magnitudes in the future. These 
mechanisms of the TDM are all detailed in Table 4.5. 

Results of the TDM on the Standard Deviation of TVIC The TDM was conducted 
on the standard deviation of an 18 second sliding window over each subject's TVIC; this 
is the same setup as the PDM analysis. Normally, the parameters of the TDM are 
calibrated during training. However, for the purpose of comparing results to the PDM, the 
parameters were calibrated on the testing data. In general, the parameters were set within 
the following ranges: Tlow [4,6], L [1.2,1.4], /? [8,9]. The a and Rum parameters were 
both held constant at .3 and 5, respectively. Figure 4.4 is a plot of the TDM of E01; 8 
task-induced trends were detected, with one false alarm. Notice the instances a trend was 
identified more than once for the same task; this only indicates the TDM detected the task 
early and continued to detect further trending as the task proceeded. 

The results of the TDM analysis for each trial are in Table 4.5. The accuracy is 
defined as the proportion of tasks that were correctly detected. The average accuracy of 
the TDM was 85.4%, with over one false alarm per trial on average. Lastly, the tasks 
were detected, on average, 13 seconds after their onset, a comparatively quick detection 
when compared to the half minute delays in control charting. 
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Table 4.5 TDM algorithm 

1.   Initialize: 
1.1. Testing set, S = {xt,x2,..., xn] 

1.2. Tlow, Rum, A, /?, and L are all defined during training 

1.3. T = 0, v= 0 

1.4. 7W>=°°+ 

1.5. Lmax= Hx, where nx is tne mean of S or a training set X 

1.6. Z0= Hx + Lox, where ax is the standard deviation S or of a training set X 

1.7. V = 0, I = 0 

1.8. /= 1 

2.   Run Algorithm: 
2.1. do 
2.2. i=i+\ 

2.3. if Xt > *(_! 

2.4. it Xi > Lmax 

2.5. ^max~ %i 

2.6. T = r+1 
2.7. v = 0 

2.8. else v = v +1 end if/else 
2.9. else v = v + 1 end if/else 
2.1. while ( v < Rlim AND r < Tlow AND i < t) 

2.2. if v > Rlim 

2.3. r=0 
2.4. ^max~ %i 

2.5. else if xt > Z OR r > Tup 

2.6. V^VU^j 

2.7. I <- I U / 

2.8. T = 0, v = 0 

2.9. TuV=•+ 

2.10. Lmax= f*X 
2.11. Z =min{ Z0, Z(l-A) + ALmax} 
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Table 4.5 Results of the TDM analysis 

Trial Proportion Detected 

A01 1.00 

.750 

1.00 

.875 

.750 

.750 

A02 

E01 

E02 

F01 

F02 

Average .854 

1.166 FA/Trial 

Discussion of the TDM Overall, the results indicate that the TDM detected changes in 
cognitive load accurately, quickly, and most importantly, in real-time. Pattern recognition 
methods that classify epochs into discrete categories of cognition are not conducive to 
real-time change detection; it is unclear when a subject changes state. In contrast, the 
TDM, in combination with a subject's TVIC, can clearly indicate when a change has 
occurred. 

The principle shortcomings of the TDM are its inability to signal when a task has 
ended and the number of parameters that must be calibrated. In adaptive aiding, it is 
necessary for the TDM to not only identify the beginning of a task, but also indicate the 
task's conclusion so aiding can be withdrawn. This capability can be added to the 
algorithm by monitoring trends that reverse to the baseline once a task completes. The 
second drawback is the number of parameters that need to be set for the TDM, five in all. 
In the present analysis, only three parameters required adjustment across trials, but even 
setting these parameters is not straightforward. This process could be formalized by 
conducting a design of experiments on training data, scientifically determining the 
optimal parameter settings for each subject. 

These suggestions to remedy the shortcomings of the TDM were not pursued 
further, since the scope of this study is a proof-of-concept rather than an optimization of 
any single method. The goal of employing adaptive aiding from psychophysiological 
signals will require more than a single method. The TDM and the TVIC have been 
developed to augment the arsenal of schemes which identify changing cognitive load, and 
it is hoped that in concert with these established methods, future adaptive aiding schemes 
can be realized. 
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APPENDIX A 
TASK LOAD MEANS ANALYSIS 

Table A.l Means of features across task loads for A01 

Theta Alpha Beta 

LL 1.182 

1.246 

1.213 

0.637 

0.609 

0.572 

0.988 

0.809 

0.614 

ML 

HL 

Table A.2 Means of features across task loads for E01 

Theta Alpha Beta 

LL 1.685 

1.564 

1.493 

0.569 

0.447 

0.635 

1.023 

0.654 

0.870 

ML 

HL 

Table A.3 Means of features across task loads for F01 

Theta Alpha Beta 

LL 0.987 

0.925 

1.026 

0.332 

0.277 

0.263 

0.585 

0.414 

0.439 

ML 

HL 



Table A.4 Means of features for A01, E01, and F01 
averaged across task loads 

40 

Theta Alpha Beta 

LL 1.283 

1.237 

1.241 

0.514 

0.435 

0.487 

0.866 

0.614 

0.639 

ML 

HL 
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APPENDIX B 
FALSE ALARM DATA FROM CONTROL CHARTS 

Table B.l False alarms of EWMA-Shewart control charts 

VEOG 
Theta 

Fz 

Theta 
Fz 

Alpha 
F7 

Theta 
o2 

Alpha 
Pz 

Alpha Average 

A01 1 

0 

1 

2 

0 

0 

1 

1 

1 

2 

1 

0 

0 

0 

1 

1 

0 

0 

1.167 

0.333 

0.500 

E01 

F01 

Average 0.667 0.667 1.000 1.000 0.333 0.333 

Table B.2 False alarms of time series residuals 
control charts 

HEOG 
Beta 

Fz 

Beta 
P. 

Beta 
T5 

Beta Average 

A01 1 

2 

4 

1 

1 

4 

2 

1 

3 

1 

1 

1 

1.250 

1.250 

3.000 

E01 

F01 

Average 2.333 2.000 2.000 1.000 

Table B.3 False alarms of MCEMWA 
control charts 

Fz 

Beta 
Pz 

Beta 
T5 

Beta Average 

A01 3 

2 

2 

3 

2 

4 

3 

1 

2 

3.000 

1.667 

2.667 

E01 

F01 

Average 2.333 3.000 2.000 
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Table B.4 False alarms of various multivariate control charts 

Hotelling-T2 

(Select) 
MEWMA 

(Select) 
Hotelling- 
T2 (PCA) 

MEWMA 
(PCA) Average 

A01 4 

4 

6 

2 

1 

4 

4 

2 

4 

3 

2 

2 

3.250 

2.250 

4.000 

E01 

F01 

Average 4.667 2.333 3.333 2.333 



APPENDIX C 
PRINCPLE COMPONENT FACTOR PATTERN ANALYSIS 

Table C.l Principle component factor pattern of A01 
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PI P2 P3 P4 P5 P6 P7 P8 P9 P10 

u o 
> 

delta 0.301 -0.696 0.295 -0.036 0.053 -0.460 0.098 -0.016 0.017 -0.026 

theta 0.353 -0.634 0.308 -0.039 0.029 -0.463 0.236 0.037 0.109 -0.095 

alpha 0.466 -0.583 0.024 -0.029 -0.039 -0.368 0.359 0.003 0.074 -0.045 

beta 0.429 -0.093 -0.667 -0.106 0.136 -0.049 0.454 -0.017 -0.197 0.045 

gamma 0.338 0.168 -0.680 -0.083 0.118 -0.002 0.426 -0.034 -0.237 0.101 

o o 
X 

delta 0.030 -0.786 0.129 -0.129 -0.074 -0.082 -0.314 -0.024 0.044 0.042 

theta 0.159 -0.826 -0.147 -0.162 0.019 0.041 -0.296 -0.007 0.080 -0.017 

alpha 0.191 -0.695 -0.512 -0.191 0.171 0.202 -0.161 0.039 0.067 -0.066 

beta 0.116 -0.645 -0.581 -0.195 0.271 0.175 -0.116 0.069 0.075 -0.081 

gamma 0.148 -0.632 -0.573 -0.167 0.290 0.157 -0.105 0.076 0.071 -0.071 

N 

delta 0.355 -0.207 -0.005 0.497 0.140 0.086 -0.157 -0.027 0.036 0.604 

theta 0.230 -0.235 -0.149 0.014 -0.491 0.021 -0.288 -0.324 -0.568 -0.028 

alpha 0.106 -0.237 0.250 -0.191 -0.120 0.437 0.300 -0.560 0.235 0.080 

beta 0.804 0.275 0.027 -0.103 0.036 0.071 -0.025 -0.018 0.063 0.030 

gamma 0.808 0.432 -0.031 -0.115 0.034 -0.039 -0.157 -0.003 0.058 -0.006 

delta 0.429 -0.471 0.114 0.324 0.138 -0.236 -0.020 -0.089 -0.063 0.360 

theta 0.398 -0.637 0.009 -0.013 -0.198 -0.157 -0.168 -0.161 -0.153 -0.049 

alpha 0.450 -0.356 0.070 -0.017 -0.312 0.256 0.198 -0.305 0.303 -0.017 

beta 0.745 0.306 -0.172 -0.017 -0.013 0.095 0.022 -0.024 0.052 0.094 

gamma 0.776 0.337 -0.096 -0.040 0.010 -0.017 -0.084 -0.019 0.025 0.135 



Table C.l—Continued 
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N 
ON 

delta 0.378 -0.155 0.017 0.759 0.167 0.182 -0.027 -0.048 -0.043 -0.104 

theta 0.287 -0.341 0.042 -0.022 -0.632 0.140 0.177 0.180 -0.235 -0.013 

alpha 0.174 -0.250 0.590 -0.313 0.320 0.347 0.115 0.042 -0.257 -0.035 

beta 0.852 0.090 0.213 -0.110 0.084 -0.004 -0.034 0.062 -0.025 -0.072 

gamma 0.790 0.421 -0.036 -0.149 -0.041 -0.064 -0.194 -0.030 0.070 -0.065 

H 

delta 0.338 -0.120 0.002 0.760 0.183 0.089 0.038 -0.013 -0.073 -0.238 

theta 0.328 -0.288 -0.074 0.223 -0.470 0.160 -0.024 0.178 0.171 -0.181 

alpha 0.382 -0.146 0.504 -0.350 0.234 0.298 0.057 0.020 -0.152 -0.019 

beta 0.845 0.329 0.020 -0.047 0.011 -0.079 -0.010 0.067 0.019 -0.095 

gamma 0.768 0.509 -0.116 -0.125 -0.053 -0.063 -0.061 -0.015 0.003 -0.068 

o 

delta 0.301 -0.087 0.114 0.761 0.222 0.151 0.066 -0.055 -0.038 -0.256 

theta 0.216 -0.197 -0.090 0.195 -0.517 0.251 0.143 0.504 0.125 0.179 

alpha 0.291 -0.370 0.517 -0.198 0.214 0.262 0.056 0.335 -0.155 0.088 

beta 0.852 0.021 0.213 -0.040 0.038 -0.041 -0.024 0.080 0.007 0.001 

gamma 0.827 0.395 -0.011 -0.118 -0.028 -0.053 -0.153 -0.020 0.067 -0.049 



Table C.2 Principle component factor pattern of E01 
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PI P2 P3 P4 P5 P6 

o o w 
> 

delta -0.5189 -0.6534 0.144 -0.2419 0.0522 0.2724 

theta -0.4243 -0.7641 0.0467 -0.159 0.1439 0.2716 

alpha -0.433 -0.6961 0.1683 -0.0844 0.0845 0.3606 

beta -0.6895 -0.3628 0.0832 -0.3572 0.1927 0.0261 

gamma -0.7851 0.0523 0.2799 -0.2339 0.272 -0.0508 

o 
0 
w 
X 

delta -0.336 -0.4305 0.355 0.5134 0.0103 0.2619 

theta -0.3309 -0.384 0.4095 0.6438 -0.0397 0.0569 

alpha -0.3289 -0.2771 0.4425 0.6549 0.0255 -0.2625 

beta -0.5119 -0.1063 0.4952 0.3784 0.2077 -0.3599 

gamma -0.6706 0.1094 0.4881 0.0588 0.2694 -0.2786 

N 

delta -0.6035 -0.4614 -0.1269 -0.2895 -0.1911 -0.2703 

theta -0.3918 -0.5648 -0.4679 -0.114 -0.076 -0.3507 

alpha -0.4978 -0.1078 -0.5945 0.3151 0.2686 -0.0735 

beta -0.8873 0.2272 -0.1378 0.0452 0.1014 0.0789 

gamma -0.9107 0.2738 0.1111 -0.1049 0.0996 0.0166 

delta -0.7248 -0.4215 0.0103 -0.2809 0.0081 -0.1126 

theta -0.4696 -0.6763 -0.3183 -0.1975 0.0708 -0.2488 

alpha -0.7304 -0.2067 -0.4707 0.1129 0.1365 0.0058 

beta -0.9062 0.2418 -0.0412 0.0034 0.0692 0.104 

gamma -0.8862 0.2518 0.1427 -0.0794 0.1388 0.0524 



Table C.2—Continued 
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N 

delta -0.6402 -0.08 0.1507 -0.1932 -0.5275 -0.0622 

theta -0.4799 -0.2524 -0.2622 0.3264 -0.4346 -0.0246 

alpha -0.4693 -0.0026 -0.5046 0.4817 0.1778 0.0789 

beta -0.9078 0.2354 -0.1689 0.0688 0.0452 0.0739 

gamma -0.911 0.3084 0.0667 -0.1007 0.0427 0.0329 

H 

delta -0.6846 0.1718 0.2425 -0.1408 -0.3044 -0.051 

theta -0.7532 0.1347 -0.1896 0.0684 -0.1755 -0.1948 

alpha -0.7807 0.2635 -0.3097 0.2122 0.0648 0.0046 

beta -0.9077 0.3354 0.0736 -0.097 0.0588 0.045 

gamma -0.8565 0.3032 0.189 -0.1725 0.0366 -0.0144 

O 

delta -0.6391 -0.0012 0.2664 -0.0898 -0.5272 0.0437 

theta -0.5422 0.0021 -0.1065 0.3426 -0.4705 0.1319 

alpha -0.6947 0.2539 -0.3355 0.2498 -0.0538 0.1979 

beta -0.8691 0.267 -0.0338 -0.0628 -0.0304 0.0687 

gamma -0.8201 0.2839 0.0569 -0.1676 -0.008 0.0435 
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Table C.3 Principle component factor pattern of F01 

PI P2 P3 P4 P5 P6 

o 
0 
> 

delta 0.6481 0.4212 -0.3956 0.2711 -0.2277 0.1072 

theta 0.6769 0.4747 -0.4191 0.156 -0.093 0.166 

alpha 0.6629 0.4442 -0.4431 0.1988 -0.1474 0.1474 

beta 0.7153 0.4356 -0.3604 0.0943 -0.1592 -0.0201 

gamma 0.7047 0.3298 -0.2268 -0.0884 -0.1227 -0.2113 

u o 

delta 0.4053 0.4785 -0.007 -0.2073 0.5887 0.0549 

theta 0.3171 0.4229 -0.0119 -0.2102 0.7706 0.1341 

alpha 0.327 0.401 0.0166 -0.2174 0.7216 0.0349 

beta 0.7429 0.0939 -0.0473 -0.2071 0.2727 -0.3319 

gamma 0.8429 -0.1172 -0.0888 -0.1152 0.1073 -0.3839 

N 
to 

delta 0.6776 0.2758 0.1412 -0.0529 -0.2137 0.1642 

theta 0.7061 0.1645 0.0022 0.0995 -0.1612 0.3521 

alpha 0.5967 0.0709 0.2467 0.6371 -0.0346 -0.0227 

beta 0.9084 -0.1756 -0.129 -0.0609 -0.1039 -0.1901 

gamma 0.8487 -0.3597 -0.1385 -0.1057 -0.0291 -0.2219 

1^ 
u« 

delta 0.792 0.0362 0.0809 -0.0665 -0.0444 -0.198 

theta 0.8477 0.1565 -0.18 0.1385 -0.0355 0.0885 

alpha 0.7383 0.1694 -0.0532 0.4833 0.0014 -0.0765 

beta 0.8639 -0.11 -0.2735 -0.0184 -0.0179 -0.0425 

gamma 0.8661 -0.2598 -0.2619 -0.0743 -0.0073 -0.078 



Table C.3—Continued 
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s 

delta 0.5817 0.3189 0.4502 -0.3692 -0.3161 -0.0487 

theta 0.5812 -0.005 0.3404 -0.0409 0.0119 0.2805 

alpha 0.3621 -0.1135 0.4305 0.6667 0.2255 -0.1346 

beta 0.8372 -0.4329 -0.0042 -0.0682 0.1052 -0.1091 

gamma 0.7565 -0.5424 -0.0852 -0.0934 0.0703 -0.0969 

H 

delta 0.5121 0.3098 0.5481 -0.4078 -0.2885 -0.1013 

theta 0.6887 -0.0558 0.4622 -0.1293 -0.0936 0.0457 

alpha 0.4858 -0.068 0.5637 0.483 0.1444 -0.1009 

beta 0.6636 -0.559 -0.0096 -0.1271 0.1269 0.1912 

gamma 0.5974 -0.6202 -0.1568 -0.1055 0.1261 0.2266 

O 

delta 0.4669 0.3024 0.5679 -0.383 -0.2818 -0.1089 

theta 0.3816 0.222 0.4075 -0.2627 -0.013 0.3271 

alpha 0.2958 -0.0041 0.5662 0.5619 0.1806 0.0296 

beta 0.7242 -0.4314 0.0924 -0.0718 0.0529 0.3149 

gamma 0.6222 -0.5409 -0.0505 -0.0899 -0.0604 0.3376 



49 

REFERENCES 

Alcaraz, R., & Rieta, J. J. (2008). Wavelet bidomain sample entropy analysis to predict 
spontaneous termination of atrial fibrillation. Physiological Measurement, 29(1), 
65-80. 

Brookings, J. B., Wilson, G. F., & Swain, C. R. (1996). Psychophysiological responses to 
changes in workload during simulated air traffic control. Biological Psychology, 
42(3), 361-377. 

Bruzzo, A. A., Gesierich, B., Santi, M, Tassinari, C. A., Birbaumer, N., & Rubboli, G. 
(2008). Permutation entropy to detect vigilance changes and preictal states from 
scalp EEG in epileptic patients. A preliminary study. Neurological Sciences, 
29(1), 3-9. 

Byrne, E. A., & Parasuraman, R. (1996). Psychophysiology and adaptive automation. 
Biological Psychology, 42(3), 249-268. 

Fairclough, S. H., Venables, L., & Tattersall, A. (2005). The influence of task demand 
and learning on the psychophysiological response. International Journal of 
Psychophysiology, 56(2), 171-184. 

Fournier, L. R., Wilson, G. F., & Swain, C. R. (1999). Electrophysiological, behavioral, 
and subjective indexes of workload when performing multiple tasks: 
manipulations of task difficulty and training. International Journal of 
Psychophysiology, 31(2), 129-145. 

Freeman, F. G., Mikulka, P. J., Prinzel, L. J„ & Scerbo, M. W. (1999). Evaluation of an 
adaptive automation system using three EEG indices with a visual tracking task. 
Biological Psychology, 50(1), 61-76. 

Gevins, A., & Smith, M. (2003). Neurophysiological measures of cognitive workload 
during human-computer interaction. Theoretical Issues in Ergonomics Science, 4, 
18. 

Gevins, A., Smith, M. E., Leong, H., McEvoy, L., Whitfield, S., Du, R., et al. (1998). 
Monitoring working memory load during computer-based tasks with EEG pattern 
recognition methods. Human Factors, 40(1), 79-91. 

Gevins, A., Smith, M. E., McEvoy, L., & Yu, D. (1997). High-resolution EEG mapping 
of cortical activation related to working memory: Effects of task difficulty, type 
of processing, and practice. Cerebral Cortex, 7(4), 374-385. 

Hankins, T. C, & Wilson, G. F. (1998). A comparison of heart rate, eye activity, EEG 
and subjective measures of pilot mental workload during flight. Aviation Space 
and Environmental Medicine, 69(A), 360-367. 

He, P., Wilson, G., Russell, C, & Gerschutz, M. (2007). Removal of ocular artifacts from 
the EEG: a comparison between time-domain regression method and adaptive 
filtering method using simulated data. Medical & Biological Engineering & 
Computing, 45(5), 495-503. 

Hyvarinen, A., & Oja, E. (2000). Independent component analysis: algorithms and 
applications. Neural Networks, 13(4-5), 411-430. 



50 

Inouye, T., Shinosaki, K., Iyama, A., Matsumoto, Y., Toi, S., & Ishihara, T. (1994). 
POTENTIAL FLOW OF FRONTAL MIDLINE THETA-ACTIVITY DURING 
A MENTAL TASK IN THE HUMAN ELECTROENCEPHALOGRAM. 
Neuroscience Letters, 769(1-2), 145-148. 

Ishii, R., Shinosaki, K., Ukai, S., Inouye, T., Ishihara, T., Yoshimine, T., et al. (1999). 
Medial prefrontal cortex generates frontal midline theta rhythm. Neuroreport, 
10(4), 675-679. 

Jackson, J. E. (1980). PRINCIPAL COMPONENTS AND FACTOR-ANALYSIS .1. 
PRINCIPAL COMPONENTS. Journal of Quality Technology, 72(4), 201-213. 

Jung, T. P., Makeig, S., Stensmo, M., & Sejnowski, T. J. (1997). Estimating alertness 
from the EEG power spectrum. Ieee Transactions on Biomedical Engineering, 
44(1), 60-69. 

Klimesch, W., Schmike, H., & Pfurtscheller, G (1993). Alpha frequency, cognitive load, 
and memory performance. Brain Topography, 5, 10. 

Lowry, C. A., & Montgomery, D. C. (1995). A Review of Multivariate Control Charts. 
777s Transactions, 27, 10. 

Lowry, C. A., Woodall, W. H., Champ, C. W., & Rigdon, S. E. (1992). A 
MULTIVARIATE EXPONENTIALLY WEIGHTED MOVING AVERAGE 
CONTROL CHART. Technometrics, 34(\), 46-53. 

Makeig, S., Bell, A., Jung, T.-P., & Sejnowski, T. (1996). Independent Component 
Analysis of Electroencaphalographic Data. Advances in Neural Information 
Processing Systems 8, 6. 

Makeig, S., & Inlow, M. (1993). LAPSES IN ALERTNESS - COHERENCE OF 
FLUCTUATIONS IN PERFORMANCE AND EEG SPECTRUM. 
Electroencephalography and ClinicalNeurophysiology, 86(\), 23-35. 

Mastrangelo, C. M., Runger, G C, & Montgomery, D. C. (1996). Statistical process 
monitoring with principal components. Quality and Reliability Engineering 
International, 12(3), 203-210. 

Montgomery, D. (2009). Statistical Quality Control (6th edition ed.): John Wiley & Sons, 
Inc. 

Montgomery, D. C, Jennings, C. L., & Kulachi, M. (2008). Introduction to Time Series 
Analysis and Forecasting. Hoboken: John Wiley & Sons. 

Montgomery, D. C, & Mastrangelo, C. M. (1991). SOME STATISTICAL PROCESS- 
CONTROL METHODS FOR AUTOCORRELATED DATA. Journal of Quality 
Technology, 23(3), 179-193. 

Phillips, C, Parr, J., & Riskin, E. (2008). Signals, Systems, and Transforms (4 ed.). 
Upper Saddle River: Prentice Hall. 

Pope, A. T., Bogart, E. H., & Bartolome, D. S. (1995). BIOCYBERNETIC SYSTEM 
EVALUATES INDEXES OF OPERATOR ENGAGEMENT IN AUTOMATED 
TASK. Biological Psychology, 40(1-2), 187-195. 



51 

Prinzel, L. J., Freeman, F. C, Scerbo, M. W., Mikulka, P. J., & Pope, A. T. (2000). A 
closed-loop system for examining psychophysiological measures for adaptive task 
allocation. International Journal of Aviation Psychology, 10(4), 393-410. 

Quiroga, R. Q., Arnhold, J., Lehnertz, K., & Grassberger, P. (2000). Kulback-Leibler and 
renormalized entropies: Applications to electroencephalograms of epilepsy 
patients. Physical Review E, 62(6), 8380-8386. 

Richman, J. S., Lake, D. E., & Moorman, J. R. (2004). Sample entropy Numerical 
Computer Methods, Pt E (Vol. 384, pp. 172-184). 

Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using 
approximate entropy and sample entropy. American Journal of Physiology-Heart 
and Circulatory Physiology, 278(6), H2039-H2049. 

Scranton, R., Runger, G. C., Montgomery, D. C, & Keats, B. J. (1996). Efficient Shift 
Detection Using Multivariate Exponentially-Weighted Moving Average Control 
Charts and Principle Components. Quality and Reliability Engineering 
International, 12, 6. 

Smith, M. E., Gevins, A., Brown, H., Karnik, A., & Du, R. (2001). Monitoring task 
loading with multivariate EEG measures during complex forms of human- 
computer interaction. Human Factors, 43(3), 366-380. 

Stone, J. V. (2002). Independent component analysis: an introduction. [Review]. Trends 
in Cognitive Sciences, 6(2), 59-64. 

Tou, J., & Gonzalez, R. (1974). Pattern Recognition Principles. Reading, MA: Addison- 
Wesley. 

Vigario, R., Sarela, J., Jousmaki, V., Hamalainen, M., & Oja, E. (2000). Independent 
component approach to the analysis of EEG and MEG recordings. Ieee 
Transactions on Biomedical Engineering, 47(5), 589-593. 

Wilson, G. F., & Fisher, F. (1991). THE USE OF CARDIAC AND EYE BLINK 
MEASURES TO DETERMINE FLIGHT SEGMENT IN F4-CREWS. Aviation 
Space and Environmental Medicine, (52(10), 959-962. 

Wilson, G. F., & Fisher, F. (1995). COGNITIVE TASK CLASSIFICATION BASED 
UPON TOPOGRAPHIC EEG DATA. [Article]. Biological Psychology, 40(1-2), 
239-250. 

Wilson, G. F., & Russell, C. (1999). Operator Functional State Classification Using 
Neural Networks with Combined Physiological and Performance Features. Paper 
presented at the Proceedings of the Human Factors and Ergonomics Society 43rd 
Annual Meeting. 

Wilson, G. F., & Russell, C. A. (2003a). Operator functional state classification using 
multiple psychophysiological features in an air traffic control task. [Article]. 
Human Factors, 45(3), 381-389. 

Wilson, G. F., & Russell, C. A. (2003b). Real-time assessment of mental workload using 
psychophysiological measures and artificial neural networks. Human Factors, 
45(4), 635-643. 



52 

Wilson, G. F., & Russell, C. A. (2007). Performance enhancement in an uninhabited air 
vehicle task using psychophysiologically determined adaptive aiding. Human 
Factors, 49(6), 1005-1018. 

Yu, Zhaohan. (2009). OPTIMIZATION TECHNIQUES IN DATA MINING WITH 
APPLICATIONS TO BIOMEDICAL AND PSYCHOPHYSIOLOGICAL DATA 
SETS. University of Iowa, Iowa City. 

Zhang, D. D., Ding, H. Y., Liu, Y. F., Zhou, C, Ding, H. S., & Ye, D. T. (2009). 
Neurodevelopment in newborns: a sample entropy analysis of 
electroencephalogram. Physiological Measurement, 30(5), 491-504. 


